Reliable ML from Unreliable Data

Workshop @ NeurIPS 2025


San Diego Convention Center   |  Dec 6 or Dec 7 2025 (TBD)


Distributions shift, chatbots get jail‑broken, users game algorithms — how do we build reliable machine learning when data are missing, corrupted, or strategically manipulated?


This workshop bridges theory and practice to tackle these challenges, bringing together researchers working on distribution shift, adversarial robustness, and strategic behaviour to chart principled yet deployable solutions for Reliable ML from Unreliable Data.


Call for Papers

We invite work that advances theory, empirical understanding, or systems design for robust and reliable machine learning under imperfect data – including, but not limited to, the following topics:

Submissions may report new results, negative findings, benchmarks, or visionary perspectives.

Important Dates

Submit via OpenReview (link coming soon). The workshop is non‑archival; authors are free to publish revised versions elsewhere. Every submission will receive at least two reviews from our program committee, and accepted papers will be presented as talks or posters.

Invited Speakers

Surbhi Goel
Surbhi Goel University of Pennsylvania
    
Steve Hanneke
Steve Hanneke Purdue University
    
Chris Harshaw
Chris Harshaw Columbia University
    
Amin Karbasi
Amin Karbasi Cisco & Yale University
    
Samory Kpotufe
Samory Kpotufe Columbia University

Invited Panelists (more to come!)

Ahmad Beirami
Ahmad Beirami Ex-Google Deepmind, Meta, and EA
    
Chara Podimata
Chara Podimata MIT

Organizers

Andrew Ilyas
Andrew Ilyas Stanford / CMU
Alkis Kalavasis
Alkis Kalavasis Yale University
Anay Mehrotra
Anay Mehrotra Yale University
Manolis Zampetakis
Manolis Zampetakis Yale University

Last updated July 9, 2025 by Anay Mehrotra